

Outline

- Coils, Patient Positioning
- Acquisition Parameters, Planes and Pulse Sequences
- Knee Arthrography
- Normal Anatomy
- Abnormal Anatomy (Injury Patterns)
- High Field MRI (3.0T Magnets)

2

Imaging Details

- Supine Positioning
- Slight external rotation
- Dedicated knee coil
 - 8 channel
- 14 to 16 cm field of view
- 2.5 to 5 mm slice thickness
- Rarely use intravenous gadolinium
- Exam time 15 minutes

3

MRI Pulse Sequences

- T1 weighted Sequences
 - Fat sensitive
 - Good anatomic resolution
- Proton Density Sequences
 - Fat and fluid sensitive
 - Best anatomic resolution
- T2 Fat Saturated Sequences
 - Fluid sensitive, all else dark
 - Pathology sequence
 - Poor anatomic resolution

4

MRI Acquisition Planes

- Scout Image
 - Find the knee in the magnetic field
- Axial Images
 - Parallel to tibial plateau
- Coronal Images
 - Parallel to posterior margin of femoral condyles
- Sagittal Images
 - Perpendicular to sagittal plane

5

Axial Images Axial MPGR Axial T2 FS

6

MR Knee Arthrography

- Infrequently Performed
- Allows T1 weighted imaging for best spatial resolution
- Mainly used in cartilage and postoperative meniscus assessment
- · Fluoroscopically guided
- Anterior approach with 25 g needle
- 20-30cc Dilute Gadolinium injected
- MR performed within 45 minutes after exercise

9

MR Arthrogram Images

- Distended joint, gadolinium fills tears in structures that line the joint
- Sequences: T1 axial, coronal, sagittal with fat saturation
 - Only bright structure is gadolinium
- Coronal T1 no fat saturation
- Sagittal T2 with fat saturation

10

Interpreting Knee MR

- Systematic, disciplined approach is crucial
 - Don't go for the money
- Structured Report
 - Menisci
 - Cruciates
 - Extensor Mechanism
 - Collaterals
 - Cartilage
 - Fluid
 - Bone Marrow
- Look for Injury Patterns
- Address the clinical question

19

Grade 2 MCL Sprain Fraction of the control of the

20

Summary

- MRI plays an indispensable role in the evaluation of knee injuries.
- Intra-articular and Intravenous gadolinium are not routinely required in the assessment of knee injuries.
- High field MR systems increase diagnostic sensitivity, particularly of cartilage lesions.
- Accept nothing less than the interpretation of a specialized musculoskeletal radiologist.
- Always correlate imaging findings with clinical examination and discuss discrepancies with your radiologist.

55